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P R O C E S S  I N  A N  I N H O M O G E N E O U S  M E D I U M  

W I T H  A C C O U N T  O F  H E A T  F L U X  R E L A X A T I O N  

N .  V .  S o l o v ' e v  and  A.  V .  T a l o n o v  UDC 517 

When solving problems on heat conduction, the classical Fourier law given by q = - K T ,  is 
usually employed, and the thermal field differential equation based on it. Phase transition processes of 
the first kind in condensed media (the Stefan problem) have been thoroughIy studied [1-3]. In the case of 
intensive nonstationary heat conduction processes the equation based on the classical Fourier law is generally 
inapplicable, since the relation between the heat flux and the temperature gradient is nonlinear. However, 
I. Prigogine and later A. Lykov showed that  in most cases a linear approximation is sufficient, provided that  
the heat flux relaxation law is introduced as 

rq t  + q = - K T ~ .  (1) 

This results in a hyperbolic heat-conduction equation [4-8]. 
In the present paper we study the influence of a thin surface layer on the melt solidification process 

within the framework of the nonstationary heat flux relaxation model given above (1). The geometry of the 
problem is shown in Fig. 1. 

The materials comprising the given media have the following thermophysical characteristics: pi, Cpi, 

K~ (i = 1, 2) which are the density, specific heat, and thermal conductivity of the first (refractory) and the 
second (fusible) material in the solid and liquid state, respectively. 

In order to simplify the solution, we specify the initial and boundary conditions as follows. Let To be 
the initial temperature of the system. It is required that  To > Tf  (T I where is the phase transition temperature 
for the second material). On the left boundary (Fig. 1) constant temperature T1 (Ti < TI) is maintained. As 
will be seen, this assumption is of no principal importance but allows us to simplify the analytical expressions 
significantly and make the analysis easier. Hence, for the period before a phase transition, the problem of the 
behavior of the system is set up as 

Oui 02ui Ki 
Ot = Xi Ox 2 , i = 1, 2, Xi -- piCpi' t > O, 

u l ( - l , t )  = T 1 -  To, t > O ,  ul(O,t) = u2(O,t), t > O ,  (2) 

o ~ 1  ] ~ o ~ 2  , t > 0, ~ 2 ( ~  ~ ~ ,  t)  = 0, t > 0 (u~ = Ti - To) .  

The solution of problem (2) of the thermal distribution before the beginning of a phase transition to in 
the second material is readily derived employing the Laplace transformation [9]: 

To)=T~176176 t ~' L -2-x,/~i -~~162 /--~,/UiT~t- 

' 2(T0 - 7'1) ~ [(2n + 1 ) /+  kx.] 
T(2)=T0 7 ~ f  ~(~0)"r 2~,/~ " 
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Here r = 1 - r  is the adjoint integral of errors; 

K2 k; X~I c~-  I Ki  ( i  = 1, 2, 3); a = k = ; a0 = 
xi - p~Cpi ~ V x2 ,; + 1 

In the interest of obtaining a simpler solution, we confine ourselves to the "thin layer" approximation. 
This implies that ( 1 / ~  "" 1) or,. in other words, that the thermal distribution in the first layer is almost 
linear. In reality, this assumption is not necessary. However, had it been omitted, to would be a solution to 
the transcendental equation T(2)(0, to) = T I. Within this approximation, summing up the expansions of ~5" (z) 
truncated at the linear terms yields 

[:1, 
t o ~  7i ~veNTT/ 

Note that the "thin layer" approximation allows us to find the moment of the beginning of the phase transition 
in the second material in the explicit form. Due to the fact that to is much greater that the relaxation time 
of the layer and the liquid, the classical statement (and, therefore, the solution) of the problem of cooling is 
justified. 

When t > to, the problem of the phase transition front arises. Let us solve it, employing the energy- 
integral method [10-14] within the framework of the nonstationary heat flux relaxation model. Here the 
system of equations has the form 

aTz~ = rTu  + Tt, 0 < z < s(t) ,  t > to, T - Ta; (3) 

T(~, to) = TO)(~, to), 0 < z < +o~, 

x 2 T 2 ~  = T2t, s( t)  < z < +cx~, t > to, 

T(0, t) = T*(t), t > to, (4) 
CO 

T*(t)  = T I 2 ( T / -  T1) E ( a ; ) n r  [ (2n + I)I ] 
a* ~ 1 t 2 ~ J '  

n = 0  

K2 a* k* = ,/~_2-', 

T ( 4 t ) ,  t) = T/,  

M 4 t ) , t ) ]  = - ~ ( t ) ,  t > to, 

C r*  - -  1 
(:X - -  

er* + 1; 

t > to; (5) 

s(to) = o, ~ = p3L, (6) 

where L is the latent heat of phase transition and r is the heat flux relaxation time. 
To reduce the number of expressions and to avoid excessive rewriting of the problem statement, we use 

the designation t' = t - to, and drop the prime everywhere below. Following the method of [13], we rewrite 
(6) in a more convenient form 

T(s(t), t)[7 2 - (st) 2] = d ( s u  + (1 / r ) s t )  + (~)2T2z(s(t),  t). (7) 
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Here 

K2 a* = p2Cp2" A = L/Cp3; 7 2 = a / r  = 
(7) 2 = "~'ao'*; ")'1 = rp2Cp2;  fl3Cp3' 

Now, introducing the notation 

Ul(X,t) = TI  - T ( x , t )  and u2(x, t)  = r f  - r2(x , t ) ,  

we arrive at the final statement of the phase transition front problem: 

au** = r u m  + ult, 0 < t < s(t), t > 0; 

Ul(0, t) = T f -  T*(t) = u0(t), t > 0; 

~1(4t),  t) = ~2(s(t), t); 

X2%t2x --~ U2t; 

T ( s ( t ) , t ) [ ~  2 - (st) 2] = d ( s u  + ( 1 / r ) s t )  + (~)2T2~(s(t) ,  t); 
u2(x, O) = TI - Tb(x). 

K3 

T p3 Cp3 " 

(8) 

(0) 
(10) 

(11) 
(12) 

(13) 

Integrating the governing differential equation (8) with respect to x from 0 to s(t) and employing (10) 
and (12), we obtain 

L~[O(t) + As(t)] - O1)2u2~(s(t), t) = -au lx (O,  t), (14) 

where s(t) 
( d ~  d )  f L r =  rd--~+~-~ ; O ( t ) =  u l (x , t )  dt. 

0 

Here | stands for the so-called energy integral. Expression (14) is the energy-integral equation. 
Following the method developed in [9], we seek a solution ua(x, t )  in the form of a second-degree 

polynomial 

Ul(X , t )  = a ( t ) ( x  -- s) -- b ( t ) ( x  - s )  2, s ~--- s ( t ) .  

The unknown coefficients a(t) and b(t) are determined from Eqs. (9) and (12). As (12) is awkward to handle, 
we bring it into the form 

u2z(s(t) , t )  
Aua~z(s(t) , t )  = (uxz(s(t) , t))  2 + O~Ulx(r]) 2 ~'~ ~ 5 -  ~ �9 

As a result, a(t) and b(t) are expressed as 

A (  g(s( t ) , t )  ) 
a(t) = AA, b(t) = - ~  A 2 

sA  

Here 

fl = [ 1 -  sg(S( t ) ' t ) ]  

uo -- uo(t) = T f  - T*(t); 

The thermal distribution has the form 

A = ~ - [f12 + 2uo/A]l/2.  
s 

u2x(s(t) , t )  g(4t),t) = @2 ~ - ~ "  

A2 g(s(t),  t_______~) 1 
O(x - s) 2] (15) T3(x, t) = T f  - A [A(x - s) + ~-  (x - s) 2 2sA 

Substituting the expression for the thermal field (15) into the energy-integral equation results in a nonlinear 
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equation 

= ( ~ ) 2 g ( ~ ,  t )  + - -  1 + ~ - [#2 + . ] 1 / 2  + ~ _ _  ~ [#2 + ~11/2 
s A A 2 

(# - #(t) = 2(TI - T*(t)) s(O) = O, st(O) = b) 
n ' 

We seek its solution in the form of a series in r 

8 --~ S (0) "F -S(1) " F . . -  , 8(1)/8 (0) '~ T, .S(1) ~--- T 2, 8 (0) ~'~ g 0 "F 7"1. 

Under the assumption 3' >> st, which is justified by the fact that 3' is the heat disturbance propagation 
speed and st is the relaxation speed of the medium at a phase transition, we obtain 

s(~176 "F# "F 1@-7--fi]] --6a[1 ,F# - 1/1 + #  ]; (16) 

-F8 ( 1 ) L r [ s ( 0 ) [ 5 " F # +  ~ ] ]  = :I1)2g*:s,t)'Fac~[~8 (0) .q*(8,t)  ] :17) 
A 1x/r-47] 

(g*(s, t) = u2z(s(t), t)/3'2). 

Equation (16) is solved in [10]. The solution has the form 

s(~ [r (18) 
where 

t 

F(t) = I f({) d~; f(t) = r(t)h(t); h(t) = 5 ,F # ,F I/i ,F #; 
0 

r(t) = 6a[1+ # -  r #]; #=.#(t) - 2 ( T f - T )  
A 

Let us solve (17), employing solution (18) of Eq. (16). Substituting (16) and (18) into (17) yields a second-order 
nonhomogeneous ordinary differential equation. Making simple transformations, we bring it to the standard 
form and find the solution 

Here 

s (1)-exp(-t/2r) (fw(n)-'12dn) (r162 h(t) {sin ( f w(~)-l/2d~) ff ctg ae 
o o o 
t t 

0 0 

w(~)  = I / 4 r  2 - i /2 r  -F r(t)/(s(~ 

3a re(t)-exp(t__/2r)r [#*(t) ((r/)2/s(0) "F A l x / i - ~ )  + Lr{ (s(O))2#*(t)--~ (~ - 1 ~ - - ~ )  }] ; 

(19) 
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The qualitative behavior of the differences between the solidification front penetration depths is shown 
in Fig. 2, 

D(T) =_ hyperbolic (s(~ -- parabolic (s(t/r)/N), 
from which it is seen that when the time is small, the hyperbolic solidification front is significantly ahead of 
the classical solution, but as the time becomes large (T >> r), the front has pure root asymptotics, i.e., the 
classical parabolic solution. 

Unfortunately, a detailed asymptotic analysis of the correction term s0) (19) is rather complicated, 
since the solution is irrelevant in the case t << r. However, formally extending the expansion of s (1) for t << r 
to t < r we may conclude that the correction term s0) is of aperiodic nature. The correction accelerates and 
slows down the front until the oscillations are damped by the exponential factor. Such behavior of s0) may 
be attributed to the existence of a time-dependent isotherm phase transition zone. 

The approach to the problems of phase transition-intensive processes presented here can also be applied 
to the problems of vapor explosion. In the latter, positive acceleration of phase transition fi'ont propagation 
has a crucial effect on the development of Rayleigh-Taylor instability of the vapor-liquid interface, which 
finally leads to fine-scale dispersion caused by physical detonation [15, 16]. 
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